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Abstract

This paper analyzes the sequential learning problem for both parameters and
states in a stochastic volatility model with jumps. We extend two existing algorithms,
Storvik’s (2002) particle filtering algorithm and Polson, Stroud and Muller’s (2003)
practical filtering algorithm, to incorporate jumps. We analyze the performance of
these approaches using both simulated and S&P 500 index return data. We find
that the particle filter provides more accurate sequential inference than the practical
filtering approach. The differences are minor using simulated data, but greater using
S&P 500 index data as the adapted particle filtering algorithm we use efficiently
handles outliers. We analyze the implications of learning about jump parameters for
option pricing and find that parameter learning generates important implications for

option pricing.
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1 Introduction

In this paper, we analyze the problem of sequential parameter learning and state estima-
tion in a model incorporating both stochastic volatility and jumps. This sequential prob-
lem is fundamentally different from the usual inference procedures, whereby parameters
are estimated based on the entire history of data. Here, we are interested in estimating
parameters and state variables sequentially in real time as each new data point arrives.
Standard estimation techniques do not apply because it is not computationally feasible to

repeat traditional estimation algorithms, such as simulated method of moments or MCMC.

Due to these computational hurdles, the sequential problem has largely been overlooked
by the recent literature, despite its central role in both practical applications and its im-
portance for theoretical modeling. For practical finance applications, agents must estimate
parameters and make forecasts in real-time. On the theoretical side, standard rational
expectations asset pricing models assume that agents know all of the parameters and,
conditional on these parameters, the agents price future payoffs. These models are silent
regarding exactly how the agents learn about the parameter values and there is a large
literature analyzing the equilibrium implications of parameter learning of economic agents

(see, e.g., Townsend 1978 and 1983 or Bray and Kreps, 1987).

Recently, two new methods have been developed for sequential inference. The first
approach, developed in Storvik (2002) and extended here, is based on the particle filter
(Gordon, Salmond and Smith 1993 and its extensions in Pitt and Shephard, 1999). Here,
the posterior density of the parameters and state variables is approximated by a discrete set
of support points or particles. These particles are then sequentially updated as new data
arrives. Particle methods are now the benchmark for nonlinear, non-Gaussian filtering
problems. The second approach, called the practical filter, is based on rolling-window
MCMC methods and was developed in Polson, Stroud, and Muller (2003) and Johannes,
Polson, and Stroud (2004). Both approaches are computationally attractive and initial

work in Storvik (2002) and Polson, Stroud and Muller (2003) shows that the approaches



show promise for certain simple cases such as Gaussian models and log-stochastic volatility
models, although there are some problems learning the volatility of volatility parameter in

stochastic volatility models.

We focus on jump-diffusion models because these models play a central role in finance
applications. There is ample evidence the jumps in prices are important in many markets
and from disparate source.! The sequential problem is particularly interesting in these
models as jumps are rare events, and it is difficult to ‘disentangle’ jumps from diffusive
components (see Ait-Sahalia 2003). To learn about jump process parameters, the agent
must first correctly identify the movement as a jump, and then update his/her views regard-
ing the parameter values. The parameters controlling rare events are first-order important
for asset pricing applications such as option pricing or credit risk modeling. Moreover, the
dynamic process of learning about these parameters has important implications for asset
pricing applications as shown recently in Collin-Dufresne, Goldstein, and Helwege (2003)
and Benzoni, Collin-Dufresne and Goldstein (2005). Hansen and Sargent (2005) solve a
related problem, whereby an agent sequentially learns about parameters and latent states,
but here the agent is also concerned about potential model misspecification and therefore

solves a robust control problem with sequential learning.

We provide four contributions to the literature: first, we extend existing sequential
inference algorithms to incorporate jumps in prices, in addition to stochastic volatility;
second, we analyze the performance of the algorithms using simulated data, to document
their performance in a laboratory environment; third, we analyze the sequential parame-

ter inference problem using S&P 500 data; and, finally, we investigate the option pricing

ISee Bates (2000), Bakshi, Cao and Chen (1997), Pan (2002) and Eraker (2004) for evidence using option
prices, Johannes, Kumar and Polson (1999), Andersen, Benzoni, and Lund (2001), Chernov, Ghysels,
Gallant, and Tauchen (2003), Chib, Nardari and Shephard (2004), or Eraker, Johannes, and Polson (2003)
for evidence based on the time series of returns. Andersen, Bollerslev, and Diebold (2005), Barndorff-
Nielson and Shephard (2004) and Huang and Tauchen (2005) provide high-frequency evidence for the
presence of jumps. These nonparametric methods are important as they are robust to the specification of

the volatility process.



implications of the sequential jump parameter estimates.

Based on simulated data, we find that both algorithms are computationally feasible and
can sequentially estimate the jump parameters in addition to the volatility parameters.
For example, for a dataset of 1000 observations, the algorithms take less than 10 minutes.
Jumps, while significantly complicating the observed distributions, pose no real problems
for sequential estimation of the jump parameters despite their rare nature. Once a jump
arrives, both algorithms update the posteriors for the jump intensity, jump mean and
jump variance. Unlike Polson, Stroud, and Muller (2003) who find problems estimating
the volatility of stochastic volatility for both the particle and practical filtering approaches,
we do not find any problems estimating jump parameters. Thus, any problems they identify
are likely specific to the log-stochastic volatility model, and not neccessarily general problem
with the algorithms. Comparing across approaches, the practical filter perform marginally
better, in that the posterior distribution of the parameters more efficiently adapts to the

arrival of new information.

To understand how agents would sequentially learn parameters in a practical setting,
we apply the algorithms to real data using historical S&P 500 index returns. Real data
examples are of particular interest as they provide insights regarding how the algorithms
handle model misspecification, as the simple models we consider are likely misspecified.
In this realistic setting, the algorithms are again computationally attractive, providing
sequential estimates of parameters and states using almost 20 years of daily index returns

in 16 minutes.

Based on the S&P 500 sample, we find that there is substantial variation over time
in the parameter posterior distributions. For example, the jump intensities and jump size
volatility more than double over the sample and the mean jump sizes vary from about
zero to less than minus 4 percent. The changes are not monotonic, especially in the jump
parameters. Estimated jump parameters drastically change after events such as the Crash
of 1987 and both algorithms quickly adapt to new information. The particle filter provides

slightly more reliable inference (in a sense made precise below) than the practicle filter
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using real data.

Finally, we use our empirical results to analyze the implications of sequential parameter
learning on option prices. As noted by Bates (1991), Rubinstein (1994), and others, there
is a lot of time-variation in the implied volatility smile of index options. This could be due
to time-varying jump-risk premia (Pan 2002 or Santa-Clara and Yan 2005) or other factors.
When viewed through standard jump models such as Merton (1976), the data indicate that
agent’s views of the probability of large jumps change substantially over time, especially
around the crash of 1987. Benzoni, Collin-Dufresne, and Goldstein (2005) embed this
learning in an equilibrium consumption based model. Pan, Liu and Wang (2004) argue
that there is substantial uncertainty over jump parameters and investors may robustly
price options as a way of dealing with the uncertainty surrounding the jump parameters.
Our sequential parameter estimates allow us to evaluate these issues from the perspective
of a Bayesian investor who optimally learns about the parameters and states over time. We
find that sequential learning has a major impact on option prices, with implied volatility
smiles changing drastically over time. Thus, sequential learning alone can quantitatively

explain some of the major moves of the implied volatility smile over time.

Our approach builds on a number of recent papers that develop methods for sequential
parameter inference. If the parameters are known, the particle filter (Gordon, Salmond,
and Smith 1993) and its extensions (Carpenter, Clifford and Fearnhead 1999 and Pitt and
Shephard 1999) are well suited for estimating latent states in a wide-range of models. Jo-
hannes, Polson, and Stroud (2002) develop a sequential learning algorithm based on the
practical filter (see Polson, Stroud and Muller 2003 for the details and Clapp and Godsill
2000 for a related particle filtering algorithm). Storvik (2002) uses particle filtering meth-
ods for sequential learning using sufficient statistics. Carpenter, Clifford, and Fearnhead
(1999), Liu and West (2000), Kitagawa and Sato (2001), Marihno and Lopes (2002), and
Doucet and Tadic (2003) provide related particle filtering results. Other approaches include
Chopin (2002) for static models, and Gilks and Berziuni (2001) and Fearnhead (2002) who
use particle filtering and MCMC methods together with a sufficient statistic structure for



sequential parameter learning.

2 Estimating Stochastic Volatility Models with Jumps

Since the introduction of stochastic volatility models (Rosenberg (1972) and Taylor (1982)),
a number of different estimation methods have been developed. Popular methods for es-
timating either discrete or continuous-time models include MCMC (Jacquier, Polson, and
Rossi (1994), Kim, Shephard, and Chib (1998), Elerian, Shephard, and Chib (2001), Eraker
(2001), Roberts and Stramer (2001), Eraker, Johannes, and Polson (2003), and Jacquier,
Polson, and Rossi (2004)), simulated maximum likelihood (Danielsson (1994), Pedersen
(1995), Brandt and Santa-Clara (2002), Durham and Gallant (2002), and Piazzesi (2004)),
and simulated methods of moments (Duffie and Singleton (1993), Gallant and Tauchen
(1996), Gallant, Hsieh, and Tauchen (1997), and Andersen, Benzoni, and Lund (2001), and
Chernov, Ghysels, Gallant and Tauchen (2003)).

We consider sequential inference in the context the standard log-stochastic volatility
model, augmented to include jumps in prices. In this model, if we let P, denote the prices,
V/V;, the volatility, and Y;,; = log (Pi11/F;) the continuously-compounded returns, then

the model is given by the difference equations

Yirn = vVVinem + JiZien
log(Vit1) = ay + B, 1og(Vi) + 0t

where P(J; = 1) = \, Z; ~ N(p.,02), and ¢; and 7, are i.i.d. standard normal variables.
The model without jumps (J; = 0 for all ¢) is the benchmark stochastic volatility, but the
aforementioned recent research indicates that the model without jumps is misspecified, at
least for equity indices, as it cannot generate large negative movements. Similar evidence
using related models and option prices is in Bakshi, Cao and Chen (1997), Bates (2000) and
Pan (2002). For later use we define © = (A, p1,, 0., , By, 0,) as the parameter vector, let

¥ = (ay, fy) the volatility mean reversion parameters, and X; = log (V;) the log volatilities.
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Given a time series of observations, Y r = (Y1, .., Y7), the usual estimation problem is to
estimate the parameters, O, and the unobserved states, L; 7, from the observed data. In our
case, the latent variables include the volatility states, the jump times, and the jump sizes,
thus Ly r = [J17, Z17, X1,7]. In a Bayesian setting, this information is summarized by the
posterior distribution, p (6, Ly r|Y1 7). Samples from this distribution are usually obtained
via MCMC methods by iteratively sampling from the complete conditional distributions,
p(Li7|©,Y1r) and p(O|Ly 7, Y1 7). From these samples, it is straightforward to obtain
smoothed estimates of the parameters and states. For example, the posterior mean for the

parameters and state variables as
1 &
~ (9)
E[OYir] ~ e QMHH eV

and

G
1
E[LYir] ~ 5 S LY
g=1

where G is the number of samples generated in the MCMC algorithm, ©W is the ¢

parameter draw and hME is g'" draw of the latent state vector.

It is important to recognize the smoothed nature of these estimators. When estimating
volatility, for example, the estimator uses the information embedded in the entire sample.
As volatility is persistent, it is clear that both future and past information is informative
about V;. For practical applications, however, researchers do not have the luxury of waiting
to receive tomorrow’s data to estimate today’s volatility. They must estimate the volatility

based only currently available information.

This sequential learning problem is solved by iteratively computing p (O, L;|Y; ) for
t =1,...,T. This is the online or real-time estimation procedure and we stress that methods
must be able to compute these distributions in practice and not only in theory. For example,
in theory one could estimate this density as a marginal from p (©, L;|Y: ), which, in turn,
can be computed by repeatedly applying standard MCMC algorithms. However, for large
t, a MCMC algorithm, efficiently programmed, might take a couple of minutes to compute.
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Repeating this thousands of times for large daily data sets is clearly not computationally

feasible.

The two algorithms that we consider, the practical and particle filter, approximate
the true posterior density, p (©, L;|Y7 ). The particle filter approximates this density via a
discretization whereby the distribution of (0, L;) is approximated by a finite set of particles.
The practical filter, on the other hand, approximates a conditional density in the MCMC
algorithm, effectively limiting the influence that observations in the distant past can have

regarding the current state.

For the MCMC algorithm, it is important to use efficient sampling schemes for the latent
state variables. Following Kim, Shephard, and Chib (1998) we approximate the model by
assuming that the distribution of log [(Y; — J;Z;)?] is a mixture of normals. This redefines
the model, however, the approximation error is typically small.? The mixture indicators
are [, and (m},vS,w}) for i = 1,...,7 are the mixture parameters. Define the collection
of observations by Y;; = (Y7,...,Y;) and we collect the latent variables in similar vectors,
Vie, Xas Jie, Z1y, and I;,. Given this notation, the joint posterior for the states and

parameters is

t
NQANNHLJNH“?NOLJ®_SAV X :ﬁAM\W_Kﬂ“ Nﬂukﬂv NQAANq;@v @ANﬂ_®V ﬁmkﬂikﬂlHu®v »@A@V

T=1
where p (0) is the prior distribution of the parameters. For reference, recall the model

specification:
Yirr = Vi€ + Jen1Zin
log(Vit1) = ay + B, 1og(Vi) + o1,
where P(J; =1) =\, Z; ~ N(p1.,0?%), and &; and 7, are i.i.d. standard normal variables.

We assume the following conjugate priors for the parameters: A\ ~ Beta(Sy, Fy), (jt2,02) ~

.\/\C&N_So“ \&O\HQ.WV .N.QAQ.W_Q? @ovv and As\f Q.wv ~ .\/\.A@_N\\o“ @WHQ.\WV HQAQ.w_Oo“ &OV where .\N\'Q de-

20Omori, Chib, Shephard and Nakajima (2004) develop more accurate, higher order approximations, and

extend the algorithm to incorporate a leverage effect.
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notes the inverse Gamma distribution. Given the conjugate priors, the complete parameter

posterior conditionals are
p(Al...) o« Beta(S, Fy)
pp, 02] ) o Npa|my, ki 'o?) TG(02]as, be)
ﬁmﬁb“ Q.w_ - v X .\/\A@_@? GWIHQ.MV .\N.QAQ.W;O? m&“v

where for notational simplicity p(y| .. .) refers to the conditional distribution of y given all

other relevant variables. For the latent variables,

p(Je|...) o< Ber(\)

p(Zi...) o >\.Atyr QML
p(Xot|...) o< (Not recognizable)

p(Li]...) oo Mult(my,, ... 77 ,).

)

The distribution p(Xg|...) is not a known distribution. We approximate this distribution

using the Kim, Shephard, and Chib (1998) approximation and sample from it using the

forward-filtering, backward-sampling (FFBS) algorithm, see Johannes and Polson (2004)

for a description of the details. The parameters indexing the state variable posteriors are
N (Yi|pz, Vi + 02)

N (Yl piz, Ve 4 02) + (1 = MN(Y[0, V)

poa = 02 (03 + TV 02, = (07 + 1)

v@”

Y =Xy +my, + \/vL€
- o N (Y| X +mj,vf)
ST N (YX w0

Jj=1"7




and the parameters indexing the parameter posteriors are

S, =Sy + S, F,=Fy+t—8,

a; = ag + Si/2, ¢, = co +1/2,

t
my =k H(komo + Y JoZ:), by = ko + S

T=1

t
be = bo+ | komg + > .22 — kymj | /2

=1

Ve =07 (Potho + H'X), Uy = Uo + H'H
dy = do + (Vg Yorbo + XTX — o Wyily) /2

where S = S J, and H = (Hy,...,H),” H, = (1,X;.1)7, X = Xy, and Y =
_Om :M\M — pNﬂNﬂvM_.

2.1 Particle Filtering

Particle filtering, also known as the bootstrap filter, was first introduced in Gordon,
Salmond, and Smith (1993), who also discussed the problem of sequential parameter learn-
ing. We refer the reader to the edited volume by Doucet, de Freitas, and Gordon (2001)
for a detailed discussion of the historical development of the particle filter, convergence
theorems and potential improvements. Although we do not describe it in detail, we imple-
ment a variant of the particle filter due to Pitt and Shephard (1999) known as the auxiliary
particle filter (APF) and our description follows theirs closely.

There are a number of densities associated with the filtering problem: p(L:|Y1:) is
the filtering density, p (L:41|Y1,) is the predictive density, p (Y;|L:) is the likelihood, and
p(Lip1|Ly) is the state transition. Bayes rule links the predictive and filtering densities
through the identity

P (Yis1|Lis1) p (Lega|Yay)
p Q\TL_M\ZV

b AFi_M\ZtV =
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where

@A?i_u\iv = \@AFi_FVEAF_M\ZV dLy.

The key to particle filtering is an approximation of the (continuous) distribution of
the random variable L; conditional on Y;; by a discrete probability distribution, that is,
the distribution L:|Y;; is approximated by a set of particles, Ah%vwz with probability
wl, ..., m¥. By assuming the distribution is approximated with wgio_mu we can estimate

the filtering and predictive densities via: (p" refers to an estimated density)
N
N ,
P (Y1) = Mm&:i
i=1

N
PV (L |Yos) = M% Ah?r:hmvv o,
i=1

where ¢ is the Dirac function. As the number N of particles increases, the accuracy of the
discrete approximation to the continuous random variable improves. When combined with

the conditional likelihood, the filtering density at time ¢ + 1 is defined via the recursion:
2 .
PN (L[ Yiesn) o< p (Viga| Lesn) D p A?t_hmvv -
i=1

As pointed out in Gordon, Salmond and Smith (1993), the particle filter only requires
that the likelihood function, p(Y;y1|Liy1), can be evaluated and the states can be sam-
pled from their conditional distribution, p (L;1|L;). Given these mild requirements, the
particle filter applies in an broad class of models, including nearly all state space models
of practical interest. The key to the particle filtering is to propagate particles with high
importance weights and to develop an efficient algorithm for propagating particles forward
from time ¢ to time ¢+ 1. In practice, this procedure can be improved for many applications
using additional sampling methods such as those introduced in Carpenter, Clifford, and

Fearnhead (1999) and Pitt and Shephard (1999).

We extend Storvik’s (2002) particle filtering algorithm for estimating parameters and

states by incorporating a look-ahead step via the use of auxiliary variables as in Pitt
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and Shephard (1999). The key assumption is that the conditional parameter posterior
distribution, p(©|L14,Y1,), is analytically tractable and depends on the observed data
and latent variables only through a set of sufficient statistics which are straightforward to
update. For example, in a jump model, conditional on the latent states, the jump intensity

posterior depends only on total number of jumps, in this case a natural sufficient statistic.

If we denote s;11 = S (8¢, Liy1, Yir1) as the sufficient statistic which can be computed
using the previous sufficient statistic, s;, as well as the new prices and states, the particle
filtering algorithm consists of the following steps. First, assume a particle representation

of the joint distribution, (0, L;) ~ p (0, L;|Y1+). Second, the algorithm then draws
© ~p(Ols;) and Lit1 ~ p (Lis1|Le, O)

and then finally re-weights (O, L) with weights proportional to the observation equation,

p (Yigr1|Lit1, ©). Formally, the general algorithm is:
1. Initialization: given N initial particles representing the latent states, parameters and
sufficient statistics, A®§“ h%vv and AMMSV , and let w” be the associated weights.
2. Sequential updating: for each re-sampled particle:
(a) generate O ~ p A®_MMSV
(b) generate LY, ~p Abtl_hwev ®§v
(c) update the sufficient statistics, s;41 = S AmMS“ hmwt K.tlv

(d) Compute updated weights wj,; = wj - p(Y;|Li, ;).

3. Resample the particles (07, Li, ) with probabilities proportional to w_.

This naive algorithm performed extremely poorly on real data. Intuitively, the reason was
that it did not generate enough tail draws for the state variables, in particular, the jump

sizes. This is a common problem with naive particle filters and to correct this shortcoming,
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we use the auxiliary particle filter of Pitt and Shephard (1999) between steps 1 and 2. This,

to a large extent, remedied any problems with outliers.

To apply particle filtering algorithm from above to the jump diffusion model, we need
to specify the sufficient statistics which naturally arise in the conditional posteriors. For

completeness, we provide the entire algorithm:

1. For ¢ = 1,...,N: initialize sj = (So, Fo, mo, ko, ao, bo, o, Yo, co, dy) and generate

2. Fort=1,....Tandi=1,...,N:

Generate \! ~ _‘Nﬁ: T&E tNE 1Y) =p(Alsi_q)

A
Generate (112, 0%) ~ ppz, 021 X6, 1, S5, 15 2615 Vi) = 1z, 018 4)
Generate (¢',07) ~ p(v, 00| X3, 1, Jo4—1, Zoy—1, Yrz) = P(¥, 00| 5i_4)
Generate J; ~ p(J;|\?)

(Zi|t, 0?)

Generate X} ~ p(X;| X? ,, 9% 0!)

Update sufficient statistics st = s(si_,, Ji, Z¢, X})

Update augmented particles X/ = (J/, Z!, X!, 0/, i)

(a)
(b)
()
(d)
(e) Generate Z; ~
(f)
(8)
(h)
)

(i

Compute weights wi = w!_p(Y;|J!, Z¢, X}).

3. Resample particles umm with probabilities proportional to w:.

2.2 Practical Filtering stochastic volatility models with jumps

To understand the practical filter, we first describe the generic MCMC algorithm and then
discuss the development of the practical filter in the case of SVJ models. Consider the

13



following MCMC algorithm: given 0\ and F i, draw
Ot P A®FH ), M\Zv
N\G._.C ~p AN\H “_® (g+1) M\HL

the last step usually consists of separately drawing jump times, sizes and volatilities in

blocks:
vN@+H AvNH&_@ g+1) NHTSmVQM\H“v

<@t z@?“_@mt Nmtv &,ic M\:v.

For large G, these samples are draws from p (©, V14, Z1 4, J1.4|Y1.)-

The practical filter relies on the following decomposition of the joint distribution of

parameters and states:
B?ﬁhlu\ﬁ& = \@A®“ hu_hiw?M\ZVBAHZ\»_M\&L &hilﬁ

This decomposition shows that the filtering distribution is a mixture of the lagged-filtering
distribution, p (L ;—x|Y1:), and p (O, Ly| Ly ¢—k, Y1)

This suggests the following approximate filtering algorithm:

1. Initialization: for ¢ = 1, ..., G, set O = Oy where O, are the initial values of the

chain.

2. Burn-in (initial smoothing step): for ¢t = 1,....,tp and for ¢ = 1,...,G, simulate

(©,L1x) ~p(©, L1 x|Y14). Set A®€“ M%W wv equal to the last imputed A®4 MPT»V.

)

3. Sequential updating: for t =ty + 1,...,7 and for g = 1, ..., G generate

L k+1,t ™~ P AP E+1, L@ hoﬁ ?KLﬁriv

©~p A®_M%~w|? L gy, M\Zv
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and set A®“ MM@\A tv equal to the last imputed (©, L; ;1) pair and leave vaw un-
changed.

There are three separate issues that effect the efficiency and accuracy of the algorithm.
First, as k increases, the algorithm will uncover the true density as the approximation
disappears. However, the computational costs increase with &£ and therefore in principle
one would prefer, if possible to choose a small k. Second, for each time step ¢, we need to
make GG draws from posterior and therefore G must be sufficiently large. It is important to
construct an efficient algorithm in the sense that it converges very quickly to its equilibrium
distribution. Third, at each stage, it is helpful if the draws from the conditional posteriors
are exact, that is, that the algorithm uses the Gibbs sampler rather than Metropolis-
Hastings.

Details of the algorithm For completeness, we now provide the details of the algorithm

for the stochastic volatility jump-diffusion model given above:

1. For g =1,...,G, generate A®§“N%Hﬁ b@ﬁ NMSV ~ p(©, Xoa, J1, Z1).

2. Fort=1,....tpandg=1,...,G

(a) Set ©° =0 and (J?,, Z7,) = (0,0).
(b) Fori=1,...,1I:
i. Generate X, ~ p(Xo,|Ji;', 21", ©71, Y1)
ii. Generate Ji, ~ p(Jy|X§,, ﬁﬁ 01 Y1)
iii. Generate Z}, ~ p(Z14|X{,, Ji,, 0", Y1y)
iv. Generate © ~ p(O|X¢,, Ji ;, 7}, Y14)

(c) Set (019, X)) = (7, X).
3. Fort=ty+1,....,Tandg=1,....G

15



(a) Forg=1,...,G, set ©° =0 and (J? ;. ,, 2} 111,) = (0,0).
(b) Fori=1,...,1

[ i—1 1—1
. Generate X;_ »+§ ~ p(Xi- f:_uﬁ k1 L f:u@ Yik+14)

.. i i i—1
ii. Generate J;_; ., ZEA&LiZ_NWLirt t— wit@ Yiki14)
i i i i—1
iii. Generate Z; ;. , ~ p(Zi—11, “_N‘Tfrt F o O Y ki)

7 7 7
iv. Generate © 2@A®ﬁmo# ko Xt k41t Yt—kt1t T\ai,tv\zv

(c) Set A®@ t— ».Iv = A®~ vmm \?Iv

3 Applications

In this section, we compare the performance of these two algorithms using simulated data

and S&P 500 index data from 1984 to 2000.

3.1 Simulated data

To analyze both of the algorithms’ performance, we simulated 1000 daily observations from

the log-stochastic volatility with jumps using the following parameter values:

Jump Process: A = 0.01, u, = —0.04,0, = 0.05
Volatility Process: «, =0, 5, = 0.99, 0, = 0.1.

These parameters are roughly consistent with observed equity return data, see, for example,
Johannes, Kumar, and Polson (1999) and Andersen, Benzoni, and Lund (2002). This model
will generate rare jumps (about 2 per year) with sizes that are consistent with large negative
equity returns such as those in 1987 and 1997. Below, we will perform some sensitivity
analysis below by varying A to provide an understanding of how the algorithms perform as

a function of critical parameters.
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We calibrated the algorithms so that both take approximately the same amount of
computing time. For the particle filter, we chose N = 25,000. In the case of the practical
filter, we chose the combinations of G = 250, I = 10, and k£ = 25 so that the computing
time (about 6 minutes) was roughly equal to that of the particle filter. The relative com-
putational efficiency of the algorithms implies that in practice, one could likely drastically
increase N, GG, I and k to obtain more accurate approximations to the posterior while still

retaining computationally feasibly algorithms.

Stroud, Polson and Muller (2004) document that both particle and practical filtering
have difficulties sequentially learning the volatility of volatility parameter, o,. The problem
they document is purely associated with the sequential problem, as many other authors
have documented that a full MCMC smoothing approach can efficiently estimate this para-
meter (see Jacquier, Polson, and Rossi (1994) and Kim, Shephard, and Chib (1998)). The
sequential problem has difficulties with this parameter for the following reason. As new
data arrives, the posterior distribution naturally adapts. However, when very informative
(e.g., tail ) observations arrive, in principle the posterior on both the unknown parameter
and the entire past volatility path should adapt rapidly. However, due to the sequential
nature of the estimators, past volatility paths in the particle filter might not be represen-
tative once the parameters are updated. For example, if a very large shock occurs, driven
by high volatility, the posterior on o, places higher weights on higher values. However,
there may be very few high V; particles to be updated, causing degeneracies in the particle
filtering algorithm. This effect is also present, although to a somewhat lesser degree, in the
practical filter. Here, the practical filter can update k—lags of volatility, and to a certain
extent it will avoid or at least dampen the degeneracies. To abstract from this difficult and
unresolved problem, we fix o, at its true value throughout. We have performed extensive
sensitivity analysis to this parameter. Although not reported, none of our conclusions are
affected by this assumption. One of our primary goals is to see if these degeneracies occur

more generally in learning parameters that index other latent variables, in this case, jumps.

Throughout, we use the following prior parameters: So = 1, Fy = 100, kg = 2, mg = —2,
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ap = 2.25, by = 25, and Wy = (0.001,0.99) . These priors are loose, in the sense that the prior
variance is always large relative to the prior mean. For the jump parameters, the priors
impose that investors assume jumps are rare, occurring about one percent of the time, but
the prior standard deviation is also one percent, allowing for substantial uncertainty. The
jump mean prior is minus two percent compared to minus four percent for the simulated
data. Since our estimates are sequential, prior uncertainty can be evaluated at the beginning
of the sample as the posterior distribution, with few observations, is essentially drawing

from the prior distribution.

Figures 1 and 2 display the sequential posterior summaries for a representation sim-
ulation for the particle and practical filter, respectively. The label at the top of each
subplot indicates which state variable or parameter posterior is being summarized. For the
volatility (annualized) and the parameters, the plots contain the posterior median and the
(2.5,97.5) percent posterior quantiles, while the plots for the jump times and sizes contain
the true jump times or sizes (dots) and the posterior median. In the case of jump times,

the plot provides the posterior probability that a jump occurred.

A number of points emerge. First, both algorithms are able to successfully identify
nearly all of the jumps. The only jump that was substantively missed was at data point 40
and was about -3.75 percent. Both algorithms identified a small jump, less than 1 percent,
with 20 percent probability. As daily volatility was more than 1 percent, it is not difficult
for the model to generate this move with a two to three standard deviation negative shock
to g; and/or a small jump. Essentially, the jump was too small for the algorithm to detect
it. It is important to recognize that this is a signal to noise problem, and is shared by
the smoothing problem (see Johannes, Kumar, and Polson (1999) for a related discussion).
Moreover, the parameter posteriors for the jump process were not very informative at this
early stage in the algorithm, and thus the algorithm was not able to identify the move
as a jump. Near the end of the sample, there is a jump that both algorithms identify
with high probability, although both algorithms underestimate the size. The degree of

agreement between the practical and particle filter for estimating latent jump times and
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Figure 1: Sequential particle filtering estimates for 1000 simulated data points using the
particle filtering algorithm. The particle filter was run using N = 25,000 particles. The
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sizes is remarkable.

Second, the jump parameter posteriors appear to be collapsing nicely to their true
values, for both algorithms. From both figures, it is clear that we assume relatively unin-
formative priors, for example, for the jump mean the (2.5, 97.5) percent confidence band is
roughly (7, -11) percent. The figures show that the parameter posteriors rapidly update,
moving toward the true parameter values. For example, at approximately data point 250
a large jump, about -8 percent, arrived that was correctly identified by the algorithm. At
the same time, the posterior means for the jump mean, the jump variance, and the jump
intensity all decreased with the posterior variances falling also. Even though jumps are
rare as the jump intensity is one percent, the algorithms are able to accurately estimate

the parameters even with the relatively short time series.

Third, note that the estimates of the jump intensity increase sharply upon the arrival a
jump, and then decrease over time, until the next jump arrives. This non-monotonicity is
exactly what one would expect. To see this, consider the case of a continuous observation
on a Poisson process, N;, with constant intensity A. The usual estimator of the intensity
at time ¢, Mt is just

~ N,

Since N, is constant between jump times, the estimates of A will decrease between jump
times and increase discontinuously at a jump time. Regarding the volatility process para-
meters, «, and [3,, are estimated reasonably well. The speed of mean reversion is accurately
estimated and the estimates of «, are slightly downward biased, as is common with likeli-

hood based estimates of stochastic volatility mean reversion parameters.

Fourth, a comparison of the posteriors for the two algorithms reveals that the particle
filter occasionally has “spikes.” For example, for o, there is large spike in the 97.5 percent
upper band around data point 250 which is quickly reversed. This is not a surprise as
it is common for particle filtering algorithms to degenerate or impoverish, in the sense

that a small number of particles receive very large weights. While potentially worrisome,
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the algorithm does recover quickly, as probability is more evenly distributed across the
particles. There are also observed spikes in the posteriors for the other jump parameters,
1, and \. The spikes are not seen in the practical filtering algorithm. Stroud, Polson and

Muller (2004) found similar results for a pure SV model.

In order to provide some sensitivity analysis, Figure 3 compares the performance of
the particle and practical filter for the sequential learning of A, for three different jump
intensities, A = 0.01, 0.05, and 0.10, again holding the computational time equal. Overall,
the algorithms are able to correctly estimate the posterior mean, although the bands differ
for the particle and practical. The left hand panels should that the posterior bands for
A using the particle filter again have some spikes. Some of these moves are transient and
are quickly reversed, while others are rapid moves to a new region of the parameter space.

Again, notice also that the practical filter has fewer spikes.

Given this, we further investigate how varying A effects the parameter posteriors for 5,,
1, and o,, using the practical filter in Figure 4. The top panel has A = 0.01, the middle
panel A = 0.05, and the bottom panel A = 0.10. This figure shows that the posterior
estimates of 3, are relatively insensitive to variation A\. On the other hand, as A increases,
more jumps arrive and the posteriors for ., and o, more quickly converge to their true
values. We have also performed extensive simulations documenting the sensitivity of the
algorithm to variations in (3, u, and o,. In general the results are similar and are therefore
not reported. For example, the smaller the jump sizes (as measured by p, and/or o), the
more difficult it is to identify these parameters. This is not specific to sequential inference
or our algorithms, but rather is a general property of Bayesian inference which occurs when
the signal is reduced relative to the noise. We conclude from this that both algorithms are
able to accurately sequentially learn the parameters and states. While the particle filter
can have some spikes in the sequential posteriors, the impact on the overall efficacy of the

algorithm is not substantial.
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3.2 S&P 500

In this section, we consider sequential learning using daily S&P 500 index returns from
January 1984 to January 2002. We are primarily interested in how investor’s learn about
the parameters and state variables of the jump process, but the S&P data set also offers an
additional challenge for the algorithms as it is roughly four times as large as the simulated
data. If there are degeneracies in the algorithms, we are likely to see them more clearly in
the longer time series. As in the previous case, we set o, = 0.10 and sequentially learned
the other parameters.® For the particle filter, we used N = 10,000 and the same values for
the practical filter reported earlier. Both algorithms took about 16 minutes of computing

time.

Figures 5, 6, 7, 8, and 9 summarize the results: Figure 5 compares the latent state
variable estimates; Figures 6 and 7 summarize the sequential parameter posteriors for the
stochastic volatility and jump parameters, respectively; and Figures 8 and 9 analyze the
crash of 1987 in detail, comparing the practical and particle filtering estimates with the
true posteriors, as computed via full MCMC estimation. We will discuss the results in the

order they are displayed in the figures.

Figure 5 compares the sequential estimates of the state variables for the two approaches.
For the volatility state, we report (2.5, 50, 97.5) percent quantiles and for the jump times
and sizes, we report the posterior medians. For all of the parameters, the state posteriors
are similar. Focussing on the jump times, both algorithms identify the same jump size
(about 22 percent) on October 19, 1987, the date of the stock market crash. It is somewhat
surprising that both algorithms can identify this move as a jump, as it appears to be an

outlier.? Prior to the crash, both algorithms (see Figure 7) estimated that jump sizes were

3The jump parameter estimates are not particularly sensitive to this parameters, although o, and 3,

are more sensitive to this parameter.
4 Although not reported, an implementation of the particle filtering algorithm without using auxiliary

variables resulted in substantially different jump estimates. The particle filter without extensions does not

identify the crash as a large movement as a jump because when the algorithm propagates particles forward
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relatively small (u, ~ —1.5 and o, = 3). For both methods, however, there was substantial
posterior uncertainty in these parameters so that simulations of jump sizes, taking into
account parameter uncertainty, resulted in large negative draws for the jump sizes. For
example, for u, and o, the confidence bands were roughly (=5, 3) and (2.5, 7) percent,

respectively.

Figures 6 and 7 provide the sequential parameter estimates for the fixed parameters
indexing the volatility and jump process. Figure 6 shows that the posteriors for (c,,53,)
are quite similar, although there are some differences early in the time series. The quantile
bands for the particle filter are much wider in the beginning of the sample and there are
some spikes, similar to the pure simulation experiments, which are later reversed. Overall,
there are not any substantial statistically significant differences in the sequential estimates

for the volatility parameters.

The story is somewhat different for A\, p, and o, where there are more substantive
differences. Again, the particle filter has a number of short-lived spikes and for A, the upper
97.5t" quantile is much higher than for the practical filter. This is rapidly revised down
after the Crash of 1987. Prior to the crash, there was effectively one statistically significant
jump identified, so it is not surprising that the algorithms have different extreme quantiles
given the substantial posterior uncertainty. Towards the end of the sample, the estimates
of 1, are much higher for the practical filter, with the upper quantile, well above zero, while
the upper quantile is negative for the particle filter. For o, the practical filter posterior is
shifted well above the particle filter posterior, especially at the end of the sample, where
the practical filter posterior is one to two percent higher than the particle filter posterior.
By inspection, the practical filtering posterior for A is somewhat below that of the particle

filtering approach.

it simulates very few extremely large jumps. As pointed out by Pitt and Shephard (1999) particle filtering
algorithms can have severe difficulties dealing with outliers. Due to the sequential nature of the particle
filter, this misestimation has a residual affect in the algorithm as the sequential parameter estimates for

the jump parameters were also substantially different.
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Given the differences, the obvious question to ask is which one algorithm gets the right
answer? To evaluate this, we compare the posterior distributions generated by full MCMC
with those from the approximate filtering methods. That is, we characterize the "true"
posterior using full-blown MCMC estimation and then compare these posteriors with those
obtained from the practical and particle approaches. We perform two comparisons, in order
to conserve space. First, we compare the marginal parameter and state posteriors after the
Crash of 1987 and at the end of the sample. Figures 8 and 9 compare the posteriors after

the Crash and Table 1 reports posterior summaries at the end of the sample.

In Figures 8 and 9, the posterior from full MCMC is given by the smooth line and the
histogram gives the estimated posterior using practical or particle methods. A comparison
of the left-hand panels reveals that while p (Z;]Y;) are similar across methods, p (V;|Y;) for
the particle filter is more accurate than that of the practical filter. Similarly, the practical
filter is clearly more accurate than the particle for p (a,|Y;) and p (5,|Y;). In the case of the
practical filter, the posteriors for both of these parameters are substantially shifted to the
right. For p, and o, the posteriors are similar in location, but the particle filter generates

more tail mass than the practical filter.

Finally, Table 1 compares the posterior means and standard deviations for all of the
state variables and parameters. In every case, the particle filter provides more accurate
inference, although the differences are often not significant in the sense that the approximate
posterior means are close (relative to the standard deviation) to the true posterior means.
The differences are greatest for the jump parameters. We conclude from this that on real
data, where model misspecification is a concern, the particle filter performs better than the
practical filter, for the same computing time. Again, it is important to recall that the key
to the performance of the particle filtering algorithm is that the states were updated using
the auxiliary particle filtering approach of Pitt and Shephard (1999). We next consider the

impact of sequential learning on option prices.
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Table 1: Full sample comparisons. This table compares the accuracy of the two sequential
methods to full MCMC estimation. We summarize the differences in posterior distribution

via the posterior mean and standard deviation.

MCMC Particle Practical

Parameter Mean Std. Dev.  Mean Std. Dev. Mean Std. Dev
p (a,|Yr) -0.0035  0.0017  -0.0039  0.0017  -0.0039  0.0016
p (BulYT) 0.9905 0.0020 0.9905 0.0020 0.9881 0.0021
p(A\YT) 0.0064  0.0027  0.0063  0.0012  0.0040  0.0009
p (. |Yr) -2.3399  1.3053 -2.1298  0.6737  -1.3049  1.4416
p(0.|Yr) 42906  1.0294  3.3077  0.4902  6.5391  1.1087
plog (Vr) [Y7) -0.3393  0.3781 -0.2860 0.3871  -0.3765  0.3308
p (Jr|Yr) 0.0011  0.0331  0.0015  0.0331  0.0000  0.0000
p(JrZr|Yr)  0.0002  0.0285 -0.0001  0.0325  0.0000  0.0000

3.3 Sequential learning and option prices

In this section, we focus on one of the asset pricing implications of our sequential learning
results by quantifying how option prices change due to sequential parameter learning. As
mentioned in the introduction, a number of authors have noticed that there was a dramatic
increase the Black-Scholes implied volatility smiles after the crash, see, for example, Bates
(1991), Rubinstein (1994), and others, there has been quite a bit of time-variation in the

implied volatility smile of index options.

In terms of option pricing models, this suggests that in jump based models, the para-
meters indexing the jump distribution change over time. Bates (1991) addresses this issue
by taking a Merton’s (1976) jump-diffusion model and backing out option implied parame-
ters. These parameters then provide "direct insights into the climate of expectations" of
investors. Bates finds that there is substantial time variation in "crash" fears, as measured

by these parameters both pre and post crash, although the largest movements were after
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the crash, naturally. Benzoni, Collin-Dufresne, and Goldstein (2005) embed this learning
in an equilibrium consumption based model. In a related vein, Pan, Liu and Wang (2004)
argue that investors may robustly price options, as a way of dealing with the substantial
uncertainty surrounding the jump parameters. In this section, we quantify some of the

option pricing implications, and relate them to existing findings in the literature.

To investigate the option pricing implications, we use the sequential parameters as in-
puts into Merton’s option pricing model and then compute Black-Scholes implied volatility
from a range of option strikes. We use the posterior medians of the parameters as inputs.
In doing so, we abstract from the impact of learning on the stochastic volatility parameters.
Since these parameters typically have a very minor impact on the volatility smile, they will
have little impact on the results. All results are holding total volatility constant, which also
mitigates any impact of stochastic volatility, and the options mature in two weeks. Since

short-dated options display jump risks most clearly, they provide the relevant benchmark.

To understand the impact of the Crash of 1987, we report the posterior medians for the
jump parameters before and after the Crash (October 19, 1987), as well as the values at
the end of our sample. For the jump times, we report the annual estimate of the number of
jumps and for p, and o,, the parameters are in percentages. For the jump parameters, the
estimates for A\, u., and o, for October 9, 1987, October 19, 1987 and December 30, 2001
are A = (1.05,1.54,1.34), 1, = (—1.72,—4.35,—2.72), and 7, = (2.81,7.12,5.1). From this,
it is clear the huge impact of the Crash: jump probabilities increased by about 50 percent,

mean jump sizes fell dramatically, and the jump size volatility more than tripled.

To quantify the impact on implied volatility curves, Figure 10 provides Black-Scholes
implied volatility smiles for prices computing from Merton’s model using the above jump
parameter estimates and constraining total volatility to be constant. The results indicate
that the time-variation in parameters would generate drastic changes in implied volatil-
ity smiles. As measured by the slope of the implied volatility, the ratio of 5, 10, and
15 percent OTM implied volatility to ATM volatility changes from (1.02,1.14,1.28) to
(1.28,1.76,2.09). In dollars terms, for example, for a $100 stock price, the 5 percent OTM
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option prices tripled from $0.057 to $0.175. The results also indicate that the slope of the
implied volatility smile has moderated since the crash of 1987. Sequential jump parameter
estimates indicate that investors now view jumps are less likely (as measured by estimates

of \) and smaller (as measured by || and o,) at the end of the sample, than post-crash

1987.

Together, these results indicate that learning can have large and interesting implications
for options pricing. Standard option pricing models assume that investors observe the
true parameter values that index the stock price’s evolution. Our results indicate that
if investors learn about the parameters from past data, there is a substantial variation
in these parameters, and, moreover, that this learning has a first order impact on option
prices. This suggests that alternative option pricing approaches, such as those in Benzoni,

Collin-Dufresne, and Goldstein (2005) provides a fruitful avenue for future research.

4 Conclusions

This paper extends existing sequential algorithms developed in Storvik (2002) and Jo-
hannes, Polson, and Stroud (2002) to the case of stochastic volatility models with jumps.
We also extend Storvik’s algorithm to incorporate an auxiliary particle filtering step. We
find that both practical and particle filtering provide accurate inference for simulated data.
On S&P 500 data, the algorithms generate some substantial differences, with the particle
filter performing better. Both algorithms are computationally feasible as run times for even

large datasets (2000 datapoints), are less than 20 minutes.

From an economic perspective, we find substantial variation in sequential parameter
estimates, especially for jump parameters. Since jumps are rare, investors learn about the
probability of a jump and the parameters indexing the parameters infrequently, resulting
in major revisions in beliefs around jump events. We show that these revisions result in

large changes in option prices, even if total volatility is held constant. Broadie, Chernov,
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and Johannes (2005) document that there is evidence for time-varying risk-neutral jump
parameters based on option price data, and it would be interesting to compare the option
based time-varying parameter estimates and the sequential parameter estimates from the

time series.

In the future, we plan to further analyze the particle filtering algorithms, in order to
better understand their shortcomings and to propose potential remedies. One potential
remedy is to introduce alternative proposal densities for the parameters and the state
variables, building on the work of Pitt and Shephard (1999). Second, we plan on analyzing
the option pricing implications in greater detail. Our sequential estimates make strong
predictions regarding how and when implied volatility smiles will change over time and it
would be interesting to compare these implications, based solely on returns, to the actual

variation based on index option data.
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Figure 5: Filtered state variable estimates for the practical filter (left hand panels) and

particle filter (right hand panels).

For volatility, the figures display (5,50,95) percent

confidence bands. For the jump times and sizes, we report posterior medians.
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Figure 6: Sequential posterior summaries for the volatility parameters. The left (right)
panels summarize the posterior (2.5,50, 97.5) percent quantiles for the practical (particle)

filtering approach.
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Figure 7: Sequential posterior summaries for the jump parameters. The left (right) panels

summarize the posterior (2.5,50, 97.5) percent quantiles for the practical (particle) filtering

approach.
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Figure 8: This figure compares the parameter and state posterior distributions for the
practical filter (histogram) and full MCMC (smoothed density) for October 19, 1987. The

x-axis is the value of the parameter or state variable.
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Figure 9: This figure compares the parameter and state posterior distributions for the
particle filter (histogram) and full MCMC (smoothed density) for October 19, 1987. The

x-axis is the value of the parameter or state variable.
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Figure 10: Black-Scholes implied volatility smiles for various dates. The model prices were

computed using Merton’s (1976) jump model, holding volatility constant, and using the

sequential parameter estimates from the practical filter.
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