
Assimilation of satellite images into a sediment

transport model of Lake Michigan

Jonathan R. Stroud,1 Barry M. Lesht,2 David J. Schwab,3 Dmitry Beletsky,4

and Michael L. Stein5

Received 7 December 2007; revised 25 October 2008; accepted 12 December 2008; published 14 February 2009.

[1] In this paper we develop and examine several schemes for combining daily images
obtained from the Sea-viewing Wide Field Spectrometer (SeaWiFS) with a two-
dimensional sediment transport model of Lake Michigan. We consider two data
assimilation methods, direct insertion and a kriging-based approach, and perform a
forecasting study focused on a 2-month period in spring 1998 when a large storm caused
substantial amounts of sediment resuspension and horizontal sediment transport in the
lake. By beginning with the simplest possible forecast method and sequentially adding
complexity we are able to assess the improvements offered by combining the satellite data
with the numerical model. In our application, we find that data assimilation schemes
that include both the data and the lake dynamics improve forecast root mean square error
by 40% over purely model-based approaches and by 20% over purely data-based
approaches.
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1. Introduction

[2] Recent improvements in computer performance have
led to increases in the complexity of geophysical models.
Similarly, improvements in data visualization methods have
led to increased emphasis on models with detailed spatial
and temporal resolutions, the output of which can be
presented in dramatic graphical form. Both developments
in modeling have highlighted the importance of obtaining
field data appropriate for evaluating and improving com-
plex, highly resolved models. This is true particularly in the
Great Lakes, because numerical models have been among
the primary tools employed for understanding and assessing
these systems since the 1970s, when phosphorus-induced
eutrophication was the primary concern of lake managers.
[3] Current generation models are based on grid scales of

O(1)-km and run on hourly or subhourly time steps, hence
traditional ship-based surveys cannot collect data with either
the spatial or temporal density the models need for their
support. High-frequency data can be collected with instru-
ments mounted on fixed moorings, but like ship-based
surveys, these are costly unless the spatial domain of
interest is small. Satellite remote sensing, which can provide
information that is highly resolved in both space and time, is
a promising source of data that are better matched to the
models’ spatial and temporal scales and that should prove
most valuable for model evaluation and development.

[4] Of course, satellite methods are neither problem-free nor
without serious challenges of interpretation. Some of these
difficulties can be overcome by limiting the application of the
observations to variables that are most directly related to the
satellite measurements (e.g., surface temperature) and/or by
taking advantage of temporal and spatial compositing to
extract meaningful signals from inherently noisy data. Indeed,
a rich body of literature has shown that valuable data can be
obtained from satellite imagery, especially for studies of
regional-scale and seasonal processes [Brock and McClain,
1992; Uddstrom and Oien, 1999; Behrenfeld et al., 2001].
[5] Satellite observations can also be used to understand

shorter-term and localized phenomena. For example, we
used a 3-month time series of satellite images obtained from
the Sea-viewing Wide Field Spectrometer (SeaWiFS) sensor
to study a rapidly developing phytoplankton bloom in
southern Lake Michigan [Lesht et al., 2002]. Other
researchers [Hughes et al., 1998; Kostinoy et al., 2004]
used high-frequency imagery to study transient events in the
open ocean. Relatively little work, however, has been
directed toward integrating high-frequency, high-resolution
imagery with high-resolution models of aquatic processes.
Such integration should be useful both as a quantitative
measure of the models’ performance and for providing
operational models with data for near-real-time assimilation
[Schwab and Bedford, 1994].
[6] The purpose of this paper is to report on our explo-

ration of methods for combining satellite imagery with a
high-resolution numerical model. More specifically, we
discuss here our integration of SeaWiFS data with a model
originally developed for simulating sediment transport in
Lake Michigan. Understanding and predicting the move-
ment of suspended sediment is important in the Great
Lakes, because many of the contaminants of concern in
these waters are associated with fine particles, and all of the
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major nutrient cycles (carbon, nitrogen, phosphorus, and
silicon) include significant particulate phases. The complex
biogeochemical models [Chen et al., 2004] being developed
to assist in management of the lakes reflect this fact and
depend critically on accurate representation of sediment
transport processes. Even simple biogeochemical models
of the Great Lakes have been shown to be most sensitive to
their parameterizations of sediment transport [Chapra,
1977; Lesht et al., 1991].
[7] Much work has been devoted to Great Lakes sediment

modeling. Because data continuity has been valuedmore than
possibly fragmented information about spatial and temporal
patterns, and because time series are easier tomanage than are
the large three-dimensional (3-D) data sets provided by
satellites, sediment model validation studies have used time
series observations made at single points rather than satellite
imagery. On the other hand, suspended sediments are highly
reflective, and they are easily detectable in visible-wave-
length satellite images. Thus, the application of satellite data
to studies of sediment transport inmarine and aquatic systems
remains an active area of research.
[8] The first well-known exploration of satellite imagery

of Lake Michigan highlighted intriguing spatial patterns
indicating complex current structures [Mortimer, 1988] but
did not attempt quantitative analyses. Other early studies in
marine systems used very small sets of data for limited
purposes, probably because the requirements for dealing
with the satellite data exceeded the available computing
capacity. For example, Puls et al. [1994] compared three
cloud-free Coastal Zone Color Scanner images of the North
Sea with a model calculation and concluded simply that
their model did not successfully reproduce the observed
sediment distributions. As computer memory and storage
technology advanced, studies became more sophisticated
and quantitative, but they still were often based on small
sets of satellite images and limited model calculations
[Gerritsen et al., 2001; Ransibrahmanakul and Stumpf,
2002; Ouillon et al., 2004; Pleskachevsky et al., 2005].
None of these studies used satellite data either to evaluate
the performance of the models as they progressed in time or
to examine the effects of incorporating past data into the
model to improve forecasts. These two applications are our
primary focus here.
[9] In section 2 we describe the data and the numerical

model, and in section 3 we discuss several concepts of
forecasting and our approaches to image model integration.
Our results are described in section 4. In section 5 we discuss
the performance of the forecasts in some detail and illustrate
how the relationships between the forecasts and observed
fields provide insight valuable for improving the model and
for understanding the limitations of the data.We conclude that
real-time and retrospective modeling of sediment transport
can be enhanced substantially by incorporating satellite
imagery and that the data provided by the satellites can be
important both for constrainingmodel results and for assessing
the choice of model parameter values.

2. Satellite Data and Model

2.1. Satellite Images

[10] We concentrated our analysis on a 60-day time
period spanning March–April 1998, when a major sediment

resuspension event occurred in southern Lake Michigan. An
intensive data collection effort, known as the Episodic
Events Great Lakes Experiment (EEGLE, http://www.glerl.
noaa.gov/eegle/), that also began at this time is the source of
the in situ data we used in this work. The resuspension event
has been described in several papers resulting from the
EEGLE project [Schwab et al., 2000; Eadie et al., 2002].
For our purposes, the points of importance are that resus-
pension events like the one in 1998 appear to have significant
influences on lake processes, the events are easily visible
in satellite images, and considerable effort has been devoted
to developing models that simulate the effects of the
events on the lake’s biogeochemical function [Chen et al.,
2004].
[11] We used imagery from SeaWiFS, obtained from the

Ocean Color archive of the National Aeronautics and Space
Administration (NASA) Goddard Space Flight Center
(http://oceancolor.gsfc.nasa.gov), in this study. We limited
the data selection to overpasses between 1240 and 1440 LT
and converted the level 1 images obtained from the archive
to level 2 products by using NASA’s SeaDAS software
[Baith et al., 2001]. The output products used in our
analysis included remote sensing reflectance (RSR) in the
eight SeaWiFS bands (six in the visible and two in the near
infrared), as well as several auxiliary diagnostic variables.
Our processing included an atmospheric correction [Gordon
and Wang, 1994], a modified cloud detection and masking
value (albedo at 865 nm � 1.25%), and mapping onto a
2-km grid that was coincident with the model grid described
below. For our basic analysis we further screened the
images to eliminate those having fewer than 3500 cloud-
free pixels among the 7347 pixels covering the southern
basin. A total of 20 images, described in Table 1, passed this
screening.

2.2. In Situ Data

[12] Using satellite data to retrieve the values of geo-
physical variables can be an involved process. The radian-
ces received at the satellite must be corrected for the
confounding effects of the atmosphere and a functional
relationship must be determined between the corrected
radiances and the variable of interest. Very often such
relationships, or retrieval algorithms, are developed empir-
ically. Many so-called semiempirical algorithms have been
proposed for retrieving suspended sediment concentration
or total suspended material (TSM) from satellite observa-
tions from a variety of sensors and bands [Mitchelson-
Jacob, 1999]. Several groups [e.g., Myint and Walker,
2002; Binding et al., 2003, 2005; Budd and Warrington,
2004; Chen et al., 2004; Warrick et al., 2004] have
published suspended sediment algorithms specific for Sea-
WiFS. Using data from coastal Louisiana,Myint and Walker
[2002] explored several statistical relationships between
suspended sediment concentration and radiance in single
SeaWiFS bands (555 nm and 670 nm) and determined that a
quadratic model based on the 670-nm band fit the data best.
In their study of suspended sediments in the Irish Sea,
Binding et al. [2003] used similar statistical methods and
also adopted a quadratic model that related reflectance
(rather than radiance) at 670 nm to suspended sediment
concentration. Similar work in the Great Lakes has been
very limited. Budd and Warrington [2004] used SeaWiFS
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observations to derive linear relationships between sus-
pended sediment and reflectance at 555 nm for both Lake
Michigan and Lake Superior. Chen et al. [2004] used much
of the same data set to derive two log linear relationships,
one for each year of their study, predicting suspended
sediment concentration as an exponential function of reflec-
tance at 555 nm.
[13] Because the parameter estimates by Chen et al.

[2004] varied substantially across their two study years,
and because their fitted functions do not reproduce the
reflectance when TSM concentrations are high, we used
in situ data collected during EEGLE to develop a new
function relating suspended sediment concentration to re-
mote sensing reflectance. The locations of these EEGLE
samples, along with the bathymetry of the southern basin,
are shown in Figure 1. In total, EEGLE investigators made
65 near-surface TSM measurements in March and April
1998 and 1999. After a careful screening, we removed three
outliers and matched the remaining 62 measurements by
location and collection time with the nearest pixel of our
SeaWiFS images (Figure 2). Twenty-six of the samples,
were collected during our study period in 1998 and are used
in our forecast evaluation.
[14] We tested several relationships between the SeaWiFS

observations and TSM measurements, including those de-
scribed above, and found that the following function

RSR ¼ 0:0027þ 0:0537 log 1þ 0:4739 TSMð Þ; ð1Þ

best represented the data, where log denotes the natural
logarithm. The function is linear for small values of TSM
and logarithmic at large values. Figure 2 shows a plot of the

fitted function along with 62 matched TSM-RSR observa-
tions. We also use the inverse of this function

TSM ¼ 2:11 exp 18:62RSR� 0:05ð Þ � 1½ �; ð2Þ

for the data assimilation schemes described in section 3.

2.3. Sediment Transport Model

[15] Sediment transport models generally are designed to
simulate the time-varying distribution of particles in the
water column and sediment bed as they respond to gravi-
tational and hydrodynamic forces. These models vary in
complexity from those that yield a time series of suspended
sediment concentration at a single point [Hawley and Lesht,
1992] to those that calculate the vertical profiles of several
size classes of sediments both in the water column and the
bed as they change in both space and time [Lee et al., 2005].
The model we use here, which simulates the temporal and
spatial evolution of the depth-averaged concentration of a
single sediment class as the lake responds to wind forcing,
is of intermediate complexity. Although satellite observa-
tions do not provide direct information about the vertical
profile of sediment concentration our depth-averaged model
is probably a good representation of the water column
condition in the spring before stratification. Studies in Lake
Michigan [Hawley and Lee, 1999; Hawley and Muzzi,
2003] show that the vertical distribution of material is fairly
constant with depth during unstratified conditions.
[16] The hydrodynamic models used in this study include

a circulation model [Beletsky and Schwab, 2001; Beletsky et

Table 1. Summary of Satellite Remote Sensing Reflectance

Values for All 20 Images Used in the Forecast Studya

Date Hour m Mean SD

March 1998 Images
3/12 282 5398 �3.40 0.454
3/12 283 5491 �3.36 0.392
3/16 379 4580 �3.32 0.437
3/21 498 5414 �3.53 0.420
3/22 522 6600 �3.49 0.567
3/23 546 5646 �3.45 0.544
3/23 547 6291 �3.43 0.475
3/24 570 7079 �3.52 0.592
3/26 618 4176 �3.31 0.455
3/29 691 4146 �3.33 0.463
Total 54821 �3.43 0.497

April 1998 Images
4/4 834 7092 �3.72 0.533
4/5 859 6601 �3.68 0.485
4/11 1003 3685 �3.54 0.528
4/12 1026 6548 �3.54 0.414
4/17 1146 6587 �3.72 0.497
4/18 1171 3563 �3.71 0.276
4/19 1194 3905 �3.61 0.437
4/23 1290 6800 �3.80 0.409
4/27 1387 3929 �3.88 0.259
4/28 1410 4633 �3.80 0.370
Total 53343 �3.70 0.453

aThe m denotes number of cloud-free pixels in southern Lake Michigan;
Mean and SD denote the mean and standard deviation in units of log RSR
(natural logarithm of remote sensing reflectance) for the cloud-free pixels in
southern Lake Michigan.

Figure 1. Southern Lake Michigan water depths and
locations of the in situ measurements.
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al., 2003] that is based on the 3-D Princeton Ocean Model
(POM) and a surface wave model [Schwab et al., 1984].
Bottom horizontal shear stress (t) is calculated as a linear
function of independent stresses resulting from the full 3-D
POM (tcm) and from the wave model (twm).

t ¼ t2wm þ t2cm
� �1=2

: ð3Þ

In our application, the horizontal flows are calculated by
vertically integrating the results of the 3-D model. This is
appropriate in early spring when the lake is unstratified and
currents are relatively uniform with depth [Beletsky et al.,
2003; Lee et al., 2007]. All model runs start on 1 March
1998.
[17] Several studies [Lesht and Hawley, 1987; Lesht,

1989] have shown that wave stress dominates the current
stress in the Great Lakes and that the primary role of the
wind-forced currents is advection of material resuspended
from the bottom by the wave stress [Schwab and Beletsky,
2002]. Sediment resuspension is parameterized in the model
in terms of excess bottom shear stress, where the threshold
or critical stress is given, as are the parameters representing
the sediment settling rate and resuspension rate [Hawley
and Lesht, 1992]. Our model differs from that used by
Hawley and Lesht in that it also includes the dynamics of
the sediment bed, representing the quantity of sediment
available for resuspension in terms of a finite bed thickness
at every grid cell.
[18] Using this general framework, we write

@ dcð Þ
@t

¼ �u
@ dcð Þ
@x

� v
@ dcð Þ
@y

þ s; ð4Þ

@b

@t
¼ � s

r
; ð5Þ

where c 	 c(x, y, t) is the vertically averaged sediment
concentration at location (x, y) and time t, d 	 d(x, y) is the
water depth, b 	 b(x, y, t) is the sediment bed thickness, u 	
u(x, y, t) and v 	 v(x, y, t) are the water velocities, s 	 s(x, y,
t) is the vertical flux which incorporates resuspension and
settling, and r is the bulk bed sediment density which we
assume is 2.5 (g/cm3) [Krone, 1962; Partheniades, 1962].
[19] We assume bed-limited resuspension, so that s =

min(s*,kb), where k is the sediment density-based factor
relating the sediment mass flux to the change in bed
thickness [Lee et al., 2005] and s* is the vertical flux for
a bed of unlimited thickness, which is defined as

s* ¼ �wscþ �
t
tc

� 1

� �
; if t � tc;

s* ¼ �wsc; if t < tc:

ð6Þ

Here t = t(x, y, t) is the bottom shear stress, ws is the
settling velocity, tc is the critical bottom shear stress and � is
the resuspension rate. We implemented this model on a 2-km
grid of Lake Michigan consisting of 131 rows and 251
columns and a total of 14,458 water cells. The model initial
conditions and parameter values are listed in Table 2. The
values were chosen to represent the sediment grain size and
properties typical of the southern basin of the lake [Lee et
al., 2005] and to minimize forecast errors with respect to the
satellite data, as described in section 4.

3. Methods

[20] We consider the following forecasting problem:
Given an initial condition, expressed here as the assumed
spatial distribution of TSM on the 2-km grid on 1 March
1998, how do we best predict the evolution of the RSR field
in time? Because we are concerned with the relative
accuracy of our forecasts, we present most of our results
in terms of the transformed variable log RSR, and we
emphasize relative rather than absolute errors. We con-
ducted similar analyses using several response variables,
including TSM and RSR, and determined that this transfor-
mation does not materially affect the results (see Table 3).
[21] Of course, forecasting methods vary considerably in

complexity. Although we assumed that the best forecasting
technique would involve application of a physically based
numerical model driven by specified time series observa-
tions of external forcing mechanisms, we also considered
forecast methods that do not include lake dynamics. Our
ultimate goal, again, is to determine the extent to which
concurrent observations of the state of the system, provided
by satellite measurements, can improve the accuracy of the
resultant forecasts. By using the satellite images for com-

Figure 2. Matched in situ TSM measurements and
satellite reflectance values, along with the RSR/TSM
function defined in equation (1).

Table 2. Initial Conditions and Parameter Values for the Sediment

Transport Model

Parameter Symbol Value

Initial bed b0 2 mm
Initial TSM c0 0.01 mg/L
Settling rate ws 3.5 
 10�5 m/s
Resuspension rate � 0.05 kg/m2/s

Critical shear stress tc 0.10 N/m2
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parison with the forecasts, we can both explore and quantify
the attributes of the various forecast methods. Note that we
distinguish here between forecasting, in which we use the
model and past data to predict a future state of the system,
and smoothing, in which we might look ahead in time and
retrospectively adjust the model trajectory to match a
known future state.

3.1. Base Case

[22] In order to establish a base case with which to
compare our more complex forecasting methods, we con-
sider a forecast which assumes that the lake has spatial
variation but does not evolve in time. To obtain a valid out-
of-sample forecast with similar characteristics as our study
period, we constructed this field using satellite data from
March and April 1999 and 2000, the 2 years following the
study period. We defined the base case forecast field as the
average of the satellite log RSR at each pixel across the 61
available images during this 4-month period. This field was
used as the ‘‘Base Case’’ forecast for each of the 20 satellite
images during the March–April 1998 study period.

3.2. Persistence

[23] We also consider a persistence approach which does
not incorporate lake or sediment dynamics but updates the
field using available data at each image time. Here, the
forecast is initialized to the base case field, and is then is
updated at each subsequent image using observed satellite
data. Specifically, at each image time during the modeling
period, we reset the forecast at the cloud-free locations to
the observed satellite values, and leave the forecasts at the
cloud-covered locations unchanged. Comparison of the
persistence forecasts to the data assimilation forecasts
described in section 3.4 allows us to quantify the impact
of incorporating model dynamics.

3.3. Pure Numerical Model

[24] We also calculated forecasts based entirely on the
sediment transport model (see section 2.3) without data
updating. This scheme provides a control case against
which to compare the data assimilation schemes described
below, and allows us to quantify the incremental impact of
incorporating data into the forecast. For the pure model
forecasts, we ran the model forward from fixed initial
conditions (see Table 2), forcing it with the meteorological
wind fields interpolated from observations [see Beletsky et
al., 2003]. The model is run on an hourly external time step

over the 2-month period (1 March to 30 April 2008). At
each image time, the forecast errors are computed as the
difference between the observed satellite data and the
modeled fields at that time.

3.4. Data Assimilation

[25] The forecasting methods described above rely on
either the physical model or the satellite data, but not both.
By combining these two sources of information, we might
hope for a substantial reduction in forecast error, though this
is not necessarily the case. If both the model and data were
badly in error, combining them would merely confound the
problems. Adding bad data to a good model would diminish
the value of the model; similarly, using a bad model with
good data still would yield unreliable forecasts. Many
methods have been developed for combining models and
data, though often without recognition of the implicit
assumption that both model and data provide some reason-
able representation of the system of interest. Generally
known as data assimilation [Kalnay, 2003], the methods
are intended to capture the best of both approaches, though
implementation varies considerably from application to
application.
[26] We consider two data assimilation schemes which

sequentially incorporate observations into the model in a
conceptually simple manner. At the initial time (1 March
1998) the model state variables (TSM and bed thickness)
are set to the spatially constant values given in Table 2. The
sediment transport model is then run forward with the
prescribed meteorological forcing until the first image time
(282 h after initialization). We use equations (1) and (2) to
convert between TSM and log RSR. Subsequently, we
repeat the following steps for each image:
1. Convert the modeled TSM field to log RSR.
2. Compute the forecast error (data minus forecast).
3. Update the modeled log RSR field.
4. Convert the updated log RSR field back to TSM.
5. Run the sediment model forward to the next image time.
[27] This algorithm provides a sequence of one-image-

ahead forecasts. The one-image-ahead error field is calcu-
lated from the differences between each image and the
corresponding forecast. We also determined k-image-ahead
forecast errors by running the model with updates to image i
and then running ahead without updates to the end of the T
image series, calculating the forecast error at every image i
+ k for 1 � k � T � i.
[28] We would expect that in the absence of updating the

forecast trajectory would diverge from the observations as a
function of the length of time between updates. The average
time interval between satellite updates was 2.4 days, with a
range of 1 h (two successive satellite passes) to 6 days. We
did calculate the errors for the k-image-ahead forecasts and
found that in terms of the relative success of the different
assimilation methods, they did not differ substantially from
the one-image-ahead forecasts. We report only the one-
image-ahead results here.
[29] Note that the number of pixels included in the

forecast error calculation (step 2) depends on the complete-
ness of the image and that our image screening guaranteed
that at least 3500 pixels were used. Also note that to
minimize the potential effect of model spin-up time on the
comparison among forecast methods we did not use the first
image (hour 282) in the error analysis. Because the satellite

Table 3. Summary of the One-Image-Ahead Forecast Bias and

Root Mean Square Error for the Satellite and in Situ Dataa

Forecast Method

Satellite Data In Situ

Log RSR RSR (%) TSM TSM

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Base case 0.346 0.489 1.10 1.97 1.08 2.85 4.75 9.73
Persistence �0.022 0.299 �0.07 1.37 �0.07 2.43 1.74 9.07
Pure model 0.076 0.409 0.17 1.67 0.20 2.57 1.42 7.70
Direct insertion �0.018 0.236 0.00 1.04 0.11 1.87 1.66 6.17
Kriging �0.023 0.234 �0.02 1.02 0.09 1.84 1.61 6.04
Observedb �3.570 0.496 3.28 2.30 2.11 3.31 7.89 9.60

aRMSE, root-mean-square error.
bThe mean (bias) and standard deviation (RMSE) for the observed data.
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images do not directly inform us about changes in the
sediment bed, we do not update the sediment bed thickness
at step 3. Long-term mass conservation is not required by
the assimilation model, however, because in reality new
sediment is introduced into the lake by shoreline erosion
and direct deposition during the course of the year. Because
the sediment model includes gravitational settling, some of
the changes in the calculated suspended sediment mass
introduced by the updating eventually result in changes in
the bed thickness. We do track sediment mass during the
modeling process and the degree to which our calculations
deviate from mass conservation is described in section 5.
[30] We focus here on the results obtained from two

update schemes: direct insertion and kriging. Certainly,
many other assimilation schemes are in common use [see
Kalnay, 2003], but these two depend only on past data and
are appropriate in the pure forecasting mode that we are
testing.
3.4.1. Direct Insertion
[31] Direct insertion is a simple approach for satellite data

assimilation in which the satellite data are ‘‘inserted’’ into
the forecast model at each observation time. Specifically, at
each image time, the forecast at each observation location is
replaced with the satellite data value at the corresponding
location; the forecasts at cloud-covered pixels are left
unchanged. The direct insertion approach provided a com-
putationally fast updating scheme, since only one observa-
tion is used to update the forecast at each pixel, implying a
cost which is linear in the number of observations. How-
ever, this approach may lead to discontinuities in the
updated field due to the lack of spatial smoothing around
the edge of the cloud cover. This can be especially prob-
lematic if there is a large mismatch between the satellite
data and the forecast. We note that the persistence approach
(section 3.2) is equivalent to the direct insertion approach
without the lake or sediment dynamics.
3.4.2. Kriging
[32] To avoid spatial discontinuities in the updated fields,

it may be desirable to update the entire forecast field rather
than at just the cloud-free locations. Kriging-based
approaches [Cressie, 1993] provide a method for spatial
interpolation that is optimal if the covariance model is
correctly specified. The covariance function may be chosen
on the basis of analysis of the data fields or may be
prespecified, depending on the application. Given a set of
data and a covariance function, the so-called kriged esti-
mates are the best linear, unbiased estimates of the unknown
field at all locations.
[33] We assume the following observation model at each

image time:

yo ¼ Hyf þ e; ð7Þ

where yo is the m 
 1 satellite observation vector, yf is the
n 
 1 model forecast vector, e is the m 
 1 forecast error
vector (all expressed in units of log RSR), andH is an m
 n
incidence matrix with jth row given by Hj = (0, . . ., 0, 1,
0, . . ., 0)0, where the position of the 1 matches the jth
observation to a component of the forecast vector.
[34] In Equation (7), the errors e represent all sources of

uncertainty, including those in the physical model, in the
satellite retrieval function, and in the atmospheric correction

algorithm. To account for the spatial correlations in these
sources, we model e as a realization from a stationary
Gaussian random field with constant mean and covariance
function C(d) = cov[e(s), e(s0)], where e(s) denotes the error
at locations s, and d = ks � s0k is the Euclidean distance
between s and s0.
[35] For the analysis presented in section 4, we assume

that the errors have mean zero (i.e., the forecasts are
unbiased estimates of the data), and the following covari-
ance function:

C dð Þ ¼ s2 exp �d=lð Þ kr dð Þ: ð8Þ

Here s2 represents the variance parameter; l is the spatial
range parameter; r is the spatial cutoff distance; and kr(d) is
the fifth-order polynomial correlation function of Gaspari
and Cohn [1999, equation 4.10], which is zero for all
distances d > r. In our analysis, we choose r to be small,
implying zero correlation for most pairs of grid points. This
greatly reduces the computational cost of the update step, as
described below. The covariance model (8) was chosen after
considering other more complicated covariance functions,
including members of the Matèrn family [Stein, 1999],
nonstationary and anisotropic covariance functions, and
those with a nugget effect. However, we found that these
more complicated models did not substantially improve the
forecast performance.
[36] Let S denote the n 
 n error covariance matrix

defined at the model grid points; i.e., Sij = C(dij; q), where
dij = ksi � sjk denotes the distance between model grid
points si and sj. The updated log RSR field, yu, is then
obtained through the kriging equation:

yu ¼ yf þKe; ð9Þ

where K = SH0(hSH0)�1 is the n 
 m matrix of kriging
weights. Direct implementation of the kriging equation
involves solving an m 
 m linear system, which requires
O(m3) operations. Since m is prohibitively large in our
application (m > 3500), we use an efficient variational
approach to solve the system (see Appendix A). Under
our assumption of no measurement error, the kriged esti-
mates yu match the observations yo at the cloud-free
locations and provide spatial smoothing near the edge of
clouds. The amount of smoothing is controlled by the range
parameter l, with large values of l providing more smooth-
ing and small values providing less smoothing. In the limit
as l ! 0, no spatial smoothing is used, and the kriging and
direct insertion approaches yield identical results.

4. Results

[37] We applied the forecasting methods described above
to SeaWiFS data collected in March–April 1998. As noted
above, this time period included a major resuspension event
in southern Lake Michigan. Strong (20 m/s) north winds
blowing along the long axis of the lake for several days in
early March 1998 generated waves at the south end of the
lake that exceeded 6 m in height. When the storm passed
and the sky cleared on March 12, satellite images showed a
region of high reflectance, interpreted as newly resuspended
and eroded sediments, extending along the entire southern
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coastline of the lake (approximately 300 km). Subsequent
satellite images collected over the next several weeks
showed both along- and cross-shore transport of the sus-
pended sediment, corresponding to the general counter-
clockwise circulation pattern in this part of Lake
Michigan [Beletsky et al., 1999]. Other smaller events later
in March and in early April added to the sediment burden,
especially near the shore. By the middle of April, the water
column was almost clear of suspended sediment, and the
minimum RSR values were at or below 1% for the rest of
the month, especially in the offshore area.
[38] In the ideal case, the forecasts would perfectly match

the data at each point in space and time. In practice, of course,
we must consider the effects of systematic errors in both the
model anddata, aswell as randomerrors thatmight result from
factors like poor or inconsistent registration of the satellite
images or misspecification of the TSM-RSR functional rela-
tionship. We characterized the results of the forecasting
methods statistically in terms of bias and root-mean-square
error (RMSE). Let Ytj denote the observed satellite or in situ
data at time t and location j, Ŷ tj the corresponding predicted
value, and N the number of observations used to compute the
statistic. We consider the error statistics

Bias ¼ 1

N

X
t;j

Ytj � Ŷtj
� �

and RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
t;j

Ytj � Ŷtj
� �2s

:

Table 3 summarizes these statistics for the one-image-ahead
forecasts.

4.1. Base Case

[39] The error statistics listed in Table 3 show that the
base case forecast performs poorly. The RMSE across the
19 images is only slightly smaller than the overall standard
deviation of the observations for log RSR, and it is larger
than the RMSE values for the other forecast methods tested.
When compared with the 62 in situ samples (Table 2), the
base case forecasts are more variable, and their mean is 60%
below the observed mean. The problem with the base case
forecast is illustrated in Figure 3, which shows the results
obtained by using the persistence method (presented in
more detail below). Figure 3 (top) shows the first six
satellite images in our data series. Figure 3 (middle) shows
the forecast fields at each image time, and Figure 3 (bottom)
shows the differences between the two. Because the persis-
tence method does not include lake or sediment dynamics,
the first forecast shown (Figure 3, middle, hour 282) is
simply the base case mean from the 1999–2000 data. Even
though the base case field shows increased sediment con-
centrations near the coasts in the southern basin due to
spring resuspension events that occurred in 1999 and 2000,
the sediment concentrations are much lower than those
observed in 1998. As a result, the errors in the first forecast
(Figure 3, bottom, hour 282) are substantial. Because the
base case forecast is constant in time, the same forecast field
(Figure 3, middle, hour 282) is used for every one of the

Figure 3. Satellite data and one-image-ahead persistence forecasts at the first six image times. (top)
Satellite data; (middle) persistence forecasts; (bottom) forecast errors (data minus forecasts). Gray pixels
indicate cloud cover.
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subsequent images. Only when the high sediment concen-
trations associated with the March 1998 event are reduced
by settling and advection do the errors associated with the
base case forecast fall to levels near zero.

4.2. Persistence

[40] The persistence method, which incorporates the
satellite data without lake or sediment dynamics, substan-
tially reduces the forecast errors from the base case values.
Table 3 shows that the persistence forecast RMSE for
satellite log RSR is approximately 40% lower than for the
base case. However, with respect to the in situ data, the
persistence method shows only a slight improvement from
the base case. Figure 3 shows that the updated forecasts
(e.g., Figure 3, middle, hour 283) are calculated by replacing
the forecast values (Figure 3, middle, hour 282) with the
available data (Figure 3, top, hour 282). The magnitude of
the errors depends on the time interval between the obser-
vations and the completeness of the data set used for
updating. Examination of the errors in Figure 3 (bottom)
shows, for example, that because much of the east coast of
the lake was cloud covered at hour 282, the forecast for hour
283 (next available image) assigned the base case values
(Figure 3, middle, hour 282) to these pixels. Because fewer
pixels along the east coast were cloud covered at hour 283
and also had log RSR values higher than the corresponding
forecast values, the errors along the east coast are large and
positive (Figure 3, bottom, hour 283).

[41] The importance of including lake dynamics in the
forecasts is clearly shown by the persistence forecast errors
at hour 379 in Figure 3 (bottom, hour 379). In the 96 h
between the second and third observations, the highly
reflective area on the eastern side of the lake has both
changed shape and moved north. Because the persistence
forecast does not include dynamics, it cannot represent this
movement, and the error image shows a positive error at the
new location of the reflective area and a negative error at its
previous location. We note that such negatively correlated
errors may cancel out when images are averaged over time,
which suggests a possible limitation of model-satellite
comparisons that are based solely on the long-term statis-
tical distributions of state variables. We avoid this limitation
with the image-by-image analysis reported here.

4.3. Pure Numerical Model

[42] Figure 4 shows the forecast results obtained by using
the pure model. These parameters are optimized in the sense
that they were selected to minimize the RMSE between the
direct insertion forecasts and our observations. They fall
within the range of similar parameters used by others
modeling sediment transport in the Great Lakes [Hawley
and Lesht, 1992; Cardenas et al., 2005; Lee et al., 2005]
Although the model was initialized to spatially constant
conditions and is based on the spatially uniform and
nominal (though realistic) sediment transport parameters
listed in Table 2, it reasonably reproduces the general

Figure 4. Satellite data and pure model forecasts at the first six image times. (top) Satellite data;
(middle) model forecasts; (bottom) forecast errors (data minus forecasts). Gray pixels indicate cloud
cover.
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sediment concentration patterns we see in the observations.
In particular, the pure model does very well at representing
the long, narrow band of sediment running up the east coast
and also suggests the westward offshore transport of sedi-
ment seen in the images at hours 522 and 546.
[43] This apparent qualitative success is not reflected in

the error statistics (Table 3), however. Though it performed
better than the base case forecast, the overall errors associ-
ated with the pure model forecast are positively biased and
have substantially larger RMSE, for all the response vari-
ables, than those for the persistence forecast. Much of the
error results from the tendency of the pure model to predict
wider bands of suspended sediment along the coasts, as well
as its understandable failure to simulate the large localized
area of high reflectance that appears in the first image and
dominates many of the subsequent scenes. The fact that the
pure model tends to spread the sediment band beyond the
limits suggested by the data also is reflected in the in situ
sample statistics; the high bias results from the prediction of
lower values than are observed, and the lower RMSE
indicates that the forecast errors are smaller than those for
the base case and persistence forecasts. Some of these
problems might be alleviated by incorporating a more
complex sediment resuspension model, introducing spatial
dependence of the sediment model parameters, or by
improvements in the hydrodynamic circulation model.

4.4. Assimilation: Direct Insertion and Kriging

[44] The primary difference between the two assimilation
methods used in this study is that kriging allows us to
update the entire field at each image time, rather than
limiting the update to the possibly discontinuous set of
available pixels used in direct insertion. As noted above, the
two methods are equivalent in the limit as the spatial range
parameter l in equation (8) goes to zero. Although the two
methods differ conceptually, their forecast error statistics
presented in Table 3 are very similar and we discuss them
together. Both reduce the RMSE in satellite log RSR by
approximately 50% relative to the base case forecast and
approximately 40% when compared to the pure model.
[45] One of the goals of data assimilation is to adjust the

model forecasts to agree better with new observations and
provide more accurate predictions going forward. We would
expect, for example, that the model’s tendency to predict
wider sediment bands than are observed along the coasts
would be mitigated when the forecasts are adjusted to
reflect the narrower features typical of the data. Similarly,
the problem associated with the model’s failure to simulate
the localized offshore area of high sediment concentration
that appeared on March 12 would be resolved in the
subsequent forecasts by the insertion of the March 12
observations during the update step.
[46] The additional step (analysis of the image field being

used for update) required for the kriging method is illus-
trated in Figure 5. Rather than update the forecasts (Figure 5,
middle) with the data (Figure 5, top) at only those pixels for
which we have data, as would be the case for direct
insertion, under the kriging method we first use equation
(9) to create an analyzed field. The analyzed field is then run
forward using the numerical model to obtain the forecast for
the next image (e.g., Figure 5 (middle, hour 379) is the
forecast based on the updated field at the second image time).
Note that since our covariance model assumes no measure-

ment error, the direct insertion and kriging updates are the
same at the cloud-free pixels. This point is important for
understanding why the direct insertion and kriging results
are so similar for these data.

5. Discussion

5.1. Model Decomposition

[47] One goal of our analysis was to use the time series of
high-resolution satellite images to validate the performance
of the sediment transport model. This type of model-data
comparison is useful for gaining insight into how well the
important physical processes are represented in the model.
One way to examine model performance is to isolate the
processes represented in the model and determine how they
influence the model’s forecasting ability. Table 4 shows the
results of such an experiment, in which we used direct
insertion assimilation to test each of the eight possible
combinations of the three model components (advection,
resuspension and settling). This was done by running the
model eight times with the separate processes turned off and
on sequentially. Note that the ‘‘none’’ values in Table 4
correspond to the persistence results, since the persistence
method is equivalent to direct insertion with all physical
processes turned off.
[48] Adding the resuspension process alone slightly

reduces the variability of the forecast errors but increases
the bias. The positive bias values are due to the addition of
sediment to the water column by the resuspension process
without a compensating loss mechanism. When settling is
included in the model, the bias is reduced to near zero, and
the variability of the errors is reduced further, suggesting
that the settling and resuspension parameter values listed in
Table 2 are within a reasonable range. The converse
situation, when settling is added alone, is highly biased
but in the opposite direction. The positive bias reflects the
steady loss of material from the water column by settling
between update steps. As would be expected, this bias,
though still positive, is reduced substantially when advec-
tion is added to the settling. The error variability, however,
is not much different from that for the case when settling
and resuspension are included without advection.
[49] The error variability is reduced substantially when

advection is combined with resuspension, indicating the
dominant role that local resuspension plays in accounting
for the variability in the observations. The large bias, of
course, is again the result of adding material without
providing for a counterbalancing loss mechanism. Both
the bias and RMSE are reduced to their final values when
settling is added in the complete model.

5.2. Parameter Estimation

[50] We could, in principle, use the bias and RMSE
calculations to adjust the sediment model parameters to
some set of optimal values. Indeed, as described above, we
optimized our parameter estimates to minimize the direct
insertion RMSE to obtain the parameter set listed in Table 2.
To be most useful, however, we also would have had to
include a spatial variation in all of these parameters,
something that is of great interest, but that we were not
prepared to pursue in this study. Our aim was to explore
assimilation methods rather than to perform a model cali-
bration exercise [Lee et al., 2005], so adding spatial
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variability to the parameter values remains a problem for
future work.

5.3. Coastal Analysis

[51] Analysis based on the whole basin results allows us
to assess the overall performance of the model. Others have
commented on the steep gradient in reflectance associated
with the edge of the nearshore resuspension feature, which
generally is about 10 km wide [Eadie et al., 1996; Rao et
al., 2002]. Therefore, evaluation of the model’s ability to
reproduce this feature is also of interest. We find that the
pure model tends to predict wider (�25 km) nearshore
zones of high reflectance and smaller gradients than are seen
in the satellite data.
[52] Figure 6 shows the model and assimilation forecasts

near the coasts, along with data obtained by satellite and
from EEGLE. The EEGLE data include both in situ samples
and TSM measurements obtained from a phytoplankton
survey system (PSS). This system, described by Liebig et
al. [2006], consists of a sensor package that changes depth
as it is towed through the water at a relatively slow speed.
The PSS thus provides a nearly continuous measure of the
sampled variables through the water column for the length
of the transect. The sensor package includes an optical
particle counter that measures bulk light attenuation values.
These are converted to TSM using the method described by
[Winkleman et al., 1998]. Figure 6 shows the pure model
and assimilation forecasts for an hour within the PSS

sampling period (St. Joseph and Muskegon transects) or the
time period required to collect the grab samples (Chicago
transect), the PSS data (St. Joseph and Muskegon), and
the satellite data nearest in time to the other data. The
satellite data are displayed both as values along the transect
and as excerpts from the images that include the transects.
In the case of the Chicago transect, the nearest satellite data
follow the water column observations by about 3 days. For
the Muskegon transect, satellite images were available about
3 days on either side of the PSS data. Along the St. Joseph
transect, the nearest satellite data precede the model fore-
casts and other observations by about 4 h. The image

Figure 5. Satellite data and one-image-ahead kriging forecasts at the first six image times. (top) Satellite
data; (middle) kriging forecasts; (bottom) forecast errors (data minus forecasts). Gray pixels indicate
cloud cover.

Table 4. Summary of the One-Image-Ahead Forecast Bias and

RMSE for the Direct Insertion Approach With Different Combina-

tions of the Sediment Model Componentsa

Model Components Bias RMSE

None �0.022 0.299
Settling 0.059 0.360
Resupension �0.035 0.295
Settling, resuspension 0.001 0.285
Advection �0.037 0.277
Advection, settling 0.039 0.294
Advection, resuspension �0.063 0.256
Advection, settling, resuspension �0.018 0.236

aRMSE is in log RSR units. Sediment model components are advection,
settling, and resuspension.
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collected at hour 522 was clear for all three transects. To
illustrate the evolution of the nearshore features, we also
show the hour 522 satellite data with the St. Joseph and
Chicago transects.
[53] The flatness of the pure model forecasts near the

coasts is evident in all the transects shown in Figure 6. The

assimilated forecasts are steeper, though they do not gener-
ally equal the gradients seen in the data. The satellite values
agree well with the in situ samples and PSS values, though
one has to view this agreement carefully, because both the
PSS and satellite data were calibrated with data from the same
set of in situ samples. The agreement between the satellite

Figure 6. Forecast results for the pure model and direct insertion approaches for three transects in
southern Lake Michigan. Satellite data, in situ data, and phytoplankton survey system (PSS) data during
the same time period are also shown. The inset plots are the satellite images at the closest two image
times, and the transect locations are indicated by line segments.
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data and insertion forecast at St. Joseph reflects the fact that
the satellite data were incorporated into the forecast at hour
379. In this particular example the major differences
between the insertion and model forecasts are seen in the
region more than 10 km offshore. The TSM values esti-
mated by the insertion forecast drop steeply and match the
grab sample and PSS values, but the pure model forecast
remains relatively constant, underestimating the observed
gradient. A similar situation is seen in the Muskegon
transect, where both the satellite data and PSS indicate a
sharp drop-off in TSM beyond 10 km. Although the steep
gradient is not so clear in the insertion forecast, we must
consider that this forecast was last updated at hour 379,
about 3 days before the PSS and grab sample collection and
about 5 days before the next image. During that time, the
insertion forecast will tend to move toward the pure model
upon which it is based.

5.4. Kriging Versus Direct Insertion

[54] We had expected that kriging would improve upon
direct insertion by smoothing the forecast fields in a way
that captured the observed covariance of the observations.
Our results, however, show that kriging reduces the forecast
errors only minimally. One reason for this is that we
assumed no measurement error so that the updated fields
for direct insertion and kriging are identical at the cloud-free
pixels. Also, as noted above, we used a small spatial range
parameter of l = 2 for the kriging approach, implying that
only forecasts within a few pixels of cloud-free data are
modified in the update step. Although we experimented
with different covariance models, including ones that were
locally anisotropic, none substantially improved the forecast
results. This is a consequence of our assumption that the
forecast errors are unbiased (i.e., have mean zero). Thus,
kriging would tend to underpredict higher values in coastal
regions, where cloud cover often obscures the images. We
also found that using an error model that included a constant
bias did not reduce the forecast error. Conceivably, one
could construct a more complex model error function for
use in an anisotropic and adaptive kriging procedure, but
such an effort is beyond the scope of this paper.
[55] One of the challenges associated with using satellite

data is that the images are often incomplete and fragmented.
Although our initial screening was intended to ensure that
we began with fairly complete images, our results will be
affected by discontinuities introduced by cloud boundaries
and retrieval failures. Each of our assimilation methods
produces a complete field at the update step. In the case of
direct insertion, obscured or missing pixels are set to their
last forecast value, which may be quite different from the
value in a neighboring good pixel. Although kriging repla-
ces the obscured pixel value with a weighted function of the
nearby good observations, discontinuities in the updated
fields are reduced only slightly, because the range parameter
(l) is small. Unfortunately, the prevailing southwesterly
winds over southern Lake Michigan tend to result in
formation of cumulus clouds over the eastern shoreline.
Thus, this region, which also tends to have the highest
variability in TSM, is more often obscured than other
regions, and the errors in the gradient forecasts along the
eastern shore are increased as a result.

5.5. Time Series Analysis

[56] The performance of the assimilation can be assessed
by comparing time series of the forecasts obtained by using
the pure model and direct insertion approaches. Figure 7
shows these results for three nearshore stations located
along the Chicago, St. Joseph and Muskegon transects
(C45, J45 and M45; see Figure 1) along with the satellite
and in situ data at those locations. For reference, the wind
speed and direction in the center of the northern basin are
shown in Figure 8. The assimilation forecasts diverge from
the pure model forecasts after the first update at hour 282.
Note that the assimilation forecasts are not nudged toward
the observations but are obtained by running the model
forward from the update time with only the initial condi-
tions modified by the assimilated data. We see, for example,
that at station J45 the assimilation at hour 379 requires the
water column concentration to be reduced substantially.
This relatively low concentration is confirmed by the grab
sample collected at hour 376 and by the subsequent satellite
observation. After hour 522 the assimilation model forecasts
a rapidly increasing sediment concentration, which again is
confirmed by the satellite observation at hour 570. The pure
model also forecasts an increase in concentration during this
time period, but one of much lower magnitude. Finally, the
pure model and assimilation forecast converge late in the
record, after a prolonged period with little or no sediment
resuspension.
[57] The results shown in Figure 7 and Table 4 provide

insight into both the importance of the various modeled
processes and the values of the model parameters. Because
we have not adjusted the model parameters, both the pure
model and assimilation forecasts respond in the same ways
to the forcing shear stress. The advective flows are also the
same in both forecast schemes. Thus, differences between
the two forecasts must result from differences in the amount
of available sediment and the suspended sediment concen-
tration fields that are advected between pixels. The results in
Table 4 show that advection is the single most important
process for reducing the forecast error of the model. We
already have noted the tendency of the model to transport
too much material offshore. The difference in the forecast at
Station J45, for example, occurs because the assimilation
scheme keeps more material inshore and available for
northward advection.
[58] We noted that our assimilation methods do not

conserve mass. Depending on the retrieved sediment con-
centrations used in the update step suspended mass may be
added or removed from the system. However, mass conser-
vation is not required in the filtering application we describe
here where our goal is to provide the best forecast going
forward from the point at which the modeled field is
updated with new data. We also noted that in the assimila-
tion we do not adjust the bed thickness to account for
changes in suspended sediment mass resulting from the
updates. It might be possible to do this, but determining
how such changes are distributed spatially is problematic.
Figure 9 shows the time series of calculated total suspended
mass for the pure model as well as for the direct insertion
and kriging assimilation schemes. We see that the assimi-
lation process does have the effect of adding suspended
sediment to the system, but that the deviation in suspended
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mass relative to the pure model (which is mass conserva-
tive) is small.

6. Conclusion

[59] This paper reports a study of forecasting sediment
concentrations in Lake Michigan by combining a 2-D
sediment transport model with SeaWiFS satellite images.
We considered a number of different forecasting methods,
including a purely data-based persistence approach, a purely
physical model approach, and direct insertion and kriging
data assimilation schemes which combine the model and
satellite data sequentially. For each approach, we computed
out-of-sample forecast RMSE and found that the direct

insertion and kriging approaches improve forecast perfor-
mance by 20% over the persistence approach and by 40%
over the pure model results.
[60] We demonstrated that incorporating a time series of

satellite images into a simple sediment transport model
substantially improves forecasts of sediment concentrations
in southern Lake Michigan. We believe that these methods
can be applied in other coastal regions where modeling and
forecasting of sediment transport are of interest. There are
other possible applications of the approach including pre-
diction of ice movement in coastal waters. Data availability
need not necessarily be a limitation. Although we limited
our original set of satellite images to reduce the effects of
cloud contamination, we still had 20 good images spanning

Figure 7. Time series of pure model and direct insertion forecasts at three locations in southern Lake
Michigan (see Figure 1). Also plotted are the satellite data and the in situ measurements.
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the 60-day study period, with an average of 5400 southern
basin pixels each with which to work. This level of temporal
and spatial data density would not be available from any
other source.
[61] A number of future research directions remain. First,

we plan to incorporate other sources of data into the
assimilation scheme, including the in situ TSM measure-
ments and the fluorescence data from the phytoplankton
survey system (PSS). We also have available high-frequency
time series of water currents at 11 locations in the

southern basin of the lake, and these could be used to
update the hydrodynamic model. Recently, Zhang et al.
[2007] have shown that assimilating these current measure-
ments significantly improves the advection fields, and it is
likely that the improved advections will result in better
prediction of suspended sediment. In a further step, the
satellite, in situ, PSS, and current meter data could be used
in a combined data assimilation scheme with a coupled
hydrodynamic-sediment transport model. When sufficient
in situ data are available, relaxation of the assumption that

Figure 8. Time series of wind speed and direction in the center of northern Lake Michigan.

Figure 9. Time series of total suspended mass for the pure model, direct insertion and kriging
approaches. Total mass is computed over the entire lake (14,458 pixels).
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the sediment bed thickness and erosional properties are
spatially uniform also would likely improve the model
performance.
[62] Second, the methods used here could be extended to

incorporate sequential parameter estimation for both the
sediment transport model and the kriging covariance model.
For the results reported here, the physical model and
covariance parameters were chosen to minimize forecast
RMSE. However, more formal statistical estimation proce-
dures such as maximum likelihood and Bayesian methods
would be preferable as they account for the spatial correla-
tion in the errors. A third extension would be to provide
retrospective (smoothed) estimates of the space-time trajec-
tory of sediment concentrations given the full set of images.
In contrast to the sequential methods described here, this
would produce sediment fields without jumps at the obser-
vation times. A final extension would be to provide uncer-
tainty estimates to accompany the concentration fields. We
are currently developing methods based on the ensemble
Kalman filter [Evensen, 1994] to generate realistic uncer-
tainty fields.

Appendix A: Variational Approach for Kriging

[63] The kriging equation (9) can be written as

yu ¼ yf þSH0Q�1e;

where e = yo�Hyf is them
 1 forecast error vector andQ =
HSH0 is the m 
 m forecast covariance matrix defined at
the cloud-free locations. The update is implemented in three
steps: (1) Solve Qz = e. (2) Compute w = SH0z. (3)
Compute yu = yf + w. The last two steps are straightforward
as step 2 involves a sparse matrix-vector multiplication and
step 3 requires addition of two vectors. Step 1 is more
computationally intensive as it requires solving a system of
order m, the dimension of the observation. To solve the
system, we rely on a variational approach in which z is
defined as the minimizer of the function

f zð Þ ¼ 1

2
z0Qz� z0e:

We use an efficient preconditioned conjugate gradient (CG)
algorithm [Golub and Van Loan, 1996] to perform the
minimization. The CG requires only vector-vector multi-
plications and matrix-vector products of the form Qz.
Because of our assumption of a compactly supported
covariance function, Q is sparse and the matrix-vector
products can be computed efficiently using sparse matrix
routines. Using a convergence tolerance of 10�5 and a
starting value of z = 0, we find that the algorithm typically
converges within 25 iterations (less than 5 s of CPU time)
for each image update.
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